
Journal of Applied Business Information Systems, 1(1), 2010 67

Developing reliable distributed applications oriented on large

datasets

Sorin PAVEL*

* Academy of Economic Studies, Dauphine Universite Paris

Abstract: Distributed systems are defined and certain benefits and dangers of use are underlined.

Software reliability, maintainability and availability is mathematically defined and methods of

quantifying are specified. The development process for distributed software is presented and methods for

increased reliability are proposed for each phase.

Keywords: distributed systems, reliability, software development process

1. Distributed systems, organizational benefits and draw-backs

Computerization of modern society and large scale development of software products that work
with large collections of data lead to wide spreading of distributed systems in any field of activity:
economic, social and cultural. In addition, promulgation of new IT laws and disproportionate costs of
processing raw very large data sets in contrast with processing already prepared data encourage the
formation of large collections of data. However, these collections have to respect some quality
standards because of the effects arising from errors in very large sized data sets and significant efforts
to correct such errors.

Throughout time, distributed systems have been defined in several ways, such as:

- "you know you are using a distributed system when failure of a computer which you did not
even know that existed retain you from doing your job" [LAMP87];

- a collection of computers that do not share common clock or common physical memory but
which communicates through messages sent over a network; computers have their own
memory and operating systems and work to solve a common problem [SISH94];

- a collection of computers that appears to users as a single coherent system [TAST03];
- a wide range of computers, from poorly connected systems, such as very large networks, to

strong connected systems such as local area networks, and to strongly coupled systems such as
multiprocessor systems [GOSC91];

Since there are many definitions of a distributed system [GHOS07] some properties are widely
encountered:

- multiple autonomous processing entities, each with its own local memory [ANDR00],
[DOLE00], [GHOS07], [LYNC96], [PELE00], [KSSI08], [VSTY09]; the system consists of several
sequential processes that are independent and have their own resources; processes must have
different address spaces for the system to be able to be called "distributed"; multiple
processing units with shared memory are not distributed systems, but parallel systems (Figure
1.1);

http://www.jabis.ro

Journal of
Applied
Business
Information
Systems

68 Pavel, Developing reliable distributed applications oriented on large datasets

Figure 1.1 – Difference between distributed systems [A] and parallel systems [B]

- communication via messages between entities [ANDR00], [GHOS07], [PELE00], [KSSI08];
processes communicate with each other through messages which arrive in a finite time; the
order of messages depends strictly on physical characteristics of the communication channels;

- common purpose of processes [GHSO07], [KSSI08], [PELE00]; processes must interact with
each other to achieve a goal; if two processes P and Q are considered in a network of processes,
P calculates f(x) = x2 for some values of x and Q a set of values multiplied by pi; the two
processes do not form a distributed system, since there is no interaction between P and Q; if
the two processes cooperate to calculate areas of circles of radius x, then P and Q is a good
example of distributed system.

In [CUCO05], a computer system is distributed if it consists of hardware located at least two
geographically distinct sites, connected electronically by telecommunications, where processing or
data storage occurs at more than one site.

In a distributed system there are a number of important features to be considered [CUCO05],
[BEGR92]:

- transformation, integration and distribution of data and processes between nods;
- the locations of processing, and the type of interaction between them;
- the locations of data storage and the way data is presented to users;
- the nature of communication links between the various locations;
- the users' access to data and its security

Since their appearance in 1970 the distributed systems have become increasingly used. This is
partly because of the technological advances in telecommunications, distributed databases and
communications software and partly because of the recognition of the organizational benefits by the
users of such systems. These benefits are as follows:

- increased user satisfaction; as users can benefit from the application even thou they are
remote and separated from the source of computing power; however, from a central
organizational perspective, the sites are connected with one another and with the center in
order to act congruently with the corporate goals;

- flexible system development; as the application is growing, more computing power can be
added incrementally by purchase/installation/connection of new nods to the network; in a
centralized system the growth is hardly incremental because any overload will lead to
replacing the current system with a more powerful computer, which is expensive;

- low communications costs; there are many situations within a distributed system when
computing takes place locally; the network is used only when data or processing from

Processor

Memory

Processor

Memory

Processor

Memory

Processor Processor Processor

Memory

[A] [B]

Journal of Applied Business Information Systems, 1(1), 2010 69

elsewhere is needed; the communication costs are lower compared with a centralized system
where every action demanded network traffic;

- increased fault resistance; the remaining machines in the network continue to function and
take over the work of the failed node; what can be achieved depends on the particular network
topology and the communications software;

- increased response times; the centralized systems have poor response time, especially at peak
loading.

Though these organizational benefits may seem persuasive, there are potential dangers and costs
associated with distributed systems:

- little centralized standard setting and control; in a distributed system where processing and
data storage are located at many sites, there's a tendency of developing local practices,
alterations and software patches in order to meet specific user needs; all these lead to lack of
standardization and great heterogeneous data management which affects the quality of data,
communication and security;

- complex networking software and hardware is needed; communication is dependent of the
quality of network traffic; any failure of the network would freeze the activity;

- possibility of replicated common data at several sites; if the same partition of data is needed
and used at several sites, it is common for the data to be held as copies at each of the several
sites rather than be held once and accessed through the network when needed; this cuts
communication costs and increases response times but may lead to inconsistencies when data
is updated or changed.

The nowadays distributed systems are forced to manage very large collections of data, as the
citizen-oriented software distribution increases and promulgation of new IT laws leds to developing
applications that work with large data sets:

- telecommunications operators record each call or message within the network for a period of
six months;

- internet and e-mail providers record accessed sites for each IP address in its administration,
together with the exact date of access and data about each email message;

- government keep track of different payments for millions of people;
- national providers of utilities – gas, electricity etc. – process hundreds of millions of annual

consumer bills;
- online search engines integrate content management of billions of sites.

The impact of such distributed applications is capital in the modern economic trades, therefore the
quality of each process has to meet certain standards and regulations.

2. Software reliability, maintainability, availability

A study over software production shows that professional programmers have on average 6
software defects per 1,000 lines of code (CL). Given this rate, a typical commercial application of
350.000 CL contains over 2000 bugs, including memory leaks, language errors, library errors etc. As
the project develops, the rate increases exponentially (Figure 2.1).

70 Pavel, Developing reliable distributed applications oriented on large datasets

Figure 2.1 – The rate of software errors by lines of code

Another study conducted by Microsoft and cited in [PHAM00] shows that for a single location and
correction of a programming error it takes about 12 hours. At this rate, for the same application of
350.000 CL, over 24.000 hours or 11.4 man-years are needed to debug the application, at a cost of over
$1 million. To overcome such situations there’s an increasing need of reliable software.

Reliability is defined as the probability of success or likelihood of the system to function properly
within certain design limits. Mathematically, reliability R(t) is the probability that the system will
operate successfully in the interval from time 0 to time t:

where T is a random variable
representing failure time.

Unreliability is a measure of failure, defined as the probability that the system has an error up to
time t.

F(t) is the failure distribution function. If the variable T has density function f(t) then

or

If it is considered a successful tested system that works well when placed in use at time t = 0. The
system is increasingly exposed to error as the time increases. The probability of success for an infinite
time interval is zero. We must therefore take into account the time when it comes to reliability. It can
be said about a system that has the reliability of 0.995 for a period of 24 hours. But a statement such as
system reliability is 0.995 has no meaning because the period is unspecified.

If a system reliability function is given by R(t), the time to failure when the component is working
well, or the average time of failure (ATF) is given by:

Subtituting the last two equations
and integrating by parts, we obtain:

Code lines

Software errors

0),()(≥>= ttTPtR

0),()(≥≤= ttTPtF

∫
∞

=
t

dssftR)()(

)]([)(tR
dt

d
tf −=

∫
∞

=
0

)(dtttfATF

Journal of Applied Business Information Systems, 1(1), 2010 71

The first term of the equation is 0 at both limits, since the system must fail after a finite period of
time. Thus, ATF is:

ATF is to be used when the distribution
function for failure is known because the level of reliability determined by ATF depends on it. When a
system fails to function satisfactorily, repair is carried out to locate and correct the error.

Maintainability is defined as the probability of a failed system to be restored to the conditions
specified within a certain timeframe in which maintenance is carried out according to procedures. In
other words, maintainability is the probability of isolating and repairing a system error in a given time.

Let T be the variable describing the time of repair or the total downtime. If the repair time T has a
density function g(t), then maintainability V(t) is defined as the probability that the failed system
becomes operational by the time t.

∫=≤=
t

dssgtTPtV
0

)()()(

Average repair time (ART) or downtime is the expected value of the variable time for repair and is
given by:

∫
∞

=
0

)(dtttgART

The repair time of the system consists of two separate intervals: active repair time and passive
repair time. The passive time is determined by time elapsed from the occurrence of failure to the start
of the repair, given by the overall travel time at the customer site. Active time is the time in which the
system is actually repaired:

- the time the error is located and isolated;
- the time the erroneous component is replaced;
- time to test the new components.

Active time is optimized by designing the system so that errors are detected and isolated in a short
time. As the system becomes complex, it becomes increasingly difficult for errors to be isolated.

Reliability is a measure of the success of a system for a specified period of time. There are
situations where errors or repairs of the system are not accepted (space missions, aeronautics).

Availability is defined as the probability that the system is operational at time t. Mathematically,

ARTATF

ATF

timedownSystemtimeupSystem

timeupSystem
tyAvailabili

+
=

+
=

Availability is a measure of success used mostly for repairable systems. For non-repairable

systems, availability is the same as reliability. In repairable systems availability is greater than or

equal with reliability.

3. Increasing reliability through the development lifecycle

∫∫
∞

∞
∞

+−=−=
0

0

0

)(|)]([)]([dttRttRtRtdATF

∫
∞

=
0

)(dttRATF

72 Pavel, Developing reliable distributed applications oriented on large datasets

A software development process or lifecycle is a structural approach to the development of a

software product. It covers the entire time span of an application or project from the rising of an idea

to the “retired” software.

As any other software, the distributed applications oriented on very large datasets are developed

following five successive phases shown in Figure 3.1:

1. analysis (requirements and functional specifications)

2. design

3. coding

4. testing

5. operating and maintaining

Figure 3.1 - Software development process

Increasing reliability through development process is aiming at implementing ways to reduce

error appearances and building software easy to debug and correct. Table X shows the amount of

errors introduced and detected in a software lifecycle of a distributed application oriented on very

large datasets. In the early stages of software development, predictive models are used because no

failure data is available.

Table 3.1 – Percentage of errors introduced and detected in development phases

Development stage Errors introduced (%) Errors detected (%)

Analysis 50 15
Design 30 10

Coding and testing 20 55

Operating 10 20

At each level, a model for determining reliability level is needed. Reliability estimation is based on

the analysis of failure data. For each phase, methods for increasing reliability are given, having

considered the particularities of very large distributed applications.

Analysis phase’s purpose [PHAM00] is to define requirements and provide specifications for the

subsequent phases and activities. Research indicates that increased effort and care during this stage

will generate significant rewards in terms of reliability and general software quality. We will discuss

the distributed application special reliability issues using the stage model with three main activities

described in [PHAM00]: problem definition, requirements, specifications.

The problem definition for large distributed applications includes the problem statement and the

scope of the project. The issues discussed are:

- what is the problem trying to be solved (from the users perspective)?

Analysis Design Coding Operation Testing

Journal of Applied Business Information Systems, 1(1), 2010 73

- why is it necessary to have a software solution?

- what is the reason for using large collections of datasets?

- what are the advantages of using distributed computing for the software solution?

Within this activity all the reasons are clearly specified and sustained because this can be the

starting point or the end of a distributed application. A comparative study it’s a must between solving

the problem in a centralized system and doing it distributed.

The requirement activity consists of collecting and analyzing requirements. These are descriptions

of the capabilities and constraints of the software product. For large distributed applications, the

issues approached have to be:

- who will use the application; the target group has to be well defined, including geographical,

hardware and knowledge context of the general user;

- what are the users’ expectations in the behavior of the distributed application; detailed

description of each use case has to be given from users working on different OS, with different

resources;

- what are the users’ reliability needs; the users limits concerning eventual errors or situations

of unavailability.

Requirement analysis for distributed applications includes a feasibility study and documentation

including costs estimation, benefit estimation, schedule and risk analysis. The documentation for

requirements is the project plan that indicates the budget, the procedures and the schedule of the

project. Until this point, there are no significant differences between classic projects and distributed

applications because from the user’s perspective, it has little importance. From the following activity

(the building of specifications) the details refer to the software engineer needs and specify:

- how to process input information into expected results;

- how the software interacts with the distributed environment and with diverse other systems;

- the need of technical support for implementing (hardware, software, people);

- quality standards and measurements.

It is necessary to let the user review the output of this phase and even run some prototypes of the

application, before going to the next step. The reliability of the distributed application depends on how

well the users and software team communicate and collaborate at the analysis phase.

The design phase covers the issues concerning the building of the system to perform as required.

The two main activities of this phase refer to software architecture design and detailed design. For

distributed applications, the system structure design is capital because it partitions the software

system into smaller part that will be scattered on the network. Before subdividing the system there’s a

need of further specification analysis concerning the performance and security requirements,

assumptions and constraints and the need for software and hardware on the network. System

distribution includes subsystem process control and interface relationship: the internal interfaces

which control the interaction of distributed subsystems and the external interfaces which facilitate

interaction with environment. All of these issues are integrated in the system architecture document.

Detailed design is about designing the program and algorithmic details. The activities within

detailed design are program structure, program language and tools, validation and verification, test

planning and design documentation. For distributed application, a distributed architecture is

implemented which is one of the following:

74 Pavel, Developing reliable distributed applications oriented on large datasets

- client–server: client code contacts the server for data which is formatted and displayed it to the

user; any permanent input of the user is committed back to the server.

- 3-tier architecture: the presentation tier, the application tier and the data tier work together in

a distributed environment for a common goal;

- n-tier architecture: some web applications further forward their requests to other enterprise

services; this type of application is the one used in application servers;

- tightly coupled: a cluster of machines work together, running a shared process in parallel; the

task is subdivided in parts that are processed individually by each one and then assembled

together to make the final result;

- peer-to-peer: there is no machine or machines that provide a service or manage the network

resources; all responsibilities are uniformly divided among all machines, known as peers,

which can serve both as clients and servers;

- space based: infrastructure that creates the illusion (virtualization) of one single address-

space; data are transparently replicated according to application needs;

To provide reliability in software architecture of distributed applications oriented on large

collections, there are two important parts that have to be cleared: error detection and error isolation.

In order to meet reliability objectives several methods are recommended:

- building checkpoints - places of restarting the execution in case of failure;

- using redundant software elements – because in the distributed systems the physical space is

becoming of less importance, redundant elements increase their positive impact by offering

pieces of quality data in case of need;

- identifying high-risk areas – using different models (like the fault tree analysis) the impact of

the errors are approximated and critical areas are located, focusing extra-care from the

developers.

During detailed design, the selected data sets structures and algorithms are implemented in a

particular programming language on particular machines of the distributed network. Choosing the

appropriate program language and tools is essential.

Coding involves implementing the design into code of a programming language. The main activities

of this phase include: identifying reusable modules, editing code, inspecting code and test planning.

Coding for reliable, distributed software oriented on large datasets involves:

- practicing a development methodology; it facilitates good communication between project

team members, helping reduce introduction of faults into software;

- constructing modular, independent parts (procedures, functions) that are distributed through

the nodes of the network;

- identify and update reusable modules from other reliable similar systems;

- inspecting written code which includes code reviews and quality verification;

- controlling changes and updates and maintaining an orderly procedure for submitting,

tracking and completing requested changes to items;

- measuring reliability of acquired software especially of the reusable modules, before

developing them.

The test planning should provide details of what needs to be tested, testing strategies and

methods, testing schedules and all necessary resources.

Journal of Applied Business Information Systems, 1(1), 2010 75

Testing is the activity of verification and validation for the newly written software product. The

goals of the testing phase are:

- to find and eliminate software errors or faults;

- to check for all specified functionality of the product;

- to estimate the operational reliability of the software.

During the test phase of distributed software, issues that have to be taken into account refer to:

- testing the units (software models) by themselves for functionality, performance and security;

- testing the subsystems, focusing on interfaces and interdependences of the modules scattered

through the distributed system;

- testing the communication between subsystems through the network;

- testing the system as a whole for functionality and performance;

- testing the system’s behavior in diverse hardware (wireless, intra/extranet) and software

environments (SO, frameworks);

- testing the system with a group of common users.

Testing the software by an independent, specialized group – a different one than the developers –

provides assurance that the system satisfies the original requirements. The costs of error correcting

should also be taken into account. The costs increase rapidly during the latter parts of the

development cycle because the impact gets stronger. The probability of fixing incorrectly a known

problem also arises rapidly during the latter stages. Sometimes an incorrect fix to a problem causes

more harm than the original problem.

The operating phase usually contains activities such as installation, training, support and

maintenance. In most cases, the installation for distributed software is unnecessary, because the

application is online and already accessible. However signing-up or downloading some resources or

tools might be necessary [OCEA10].

The reliable distributed software will have at operating phase:

- online instructions for each functionality of the software;

- 24/7 online support for users question and answers;

- tools for monitoring users processes and the distribution of tasks among the network;

- tools for balancing the workloads between nodes of processing;

- available machines to scale the system in case of an great computing need;

- presence of maintenance activities that refer to: correction of errors, adaptation to other

changes, perfection of acceptable functions and prevention of future errors.

The systems improvement phases are similar to those of the system development lifecycle:

analysis, design, coding and testing.

4. Conclusions

Distributed systems have an increasing presence in the current software environment giving the

widespread of networks and online computing. The organizational benefits of using distributed

applications overcome the potential dangers and costs associated with them. However, running bad

distributed systems could ruin an entire organization, especially if the nature of the application is

related to financial status.

76 Pavel, Developing reliable distributed applications oriented on large datasets

Reliability is a quality metric that refers to the capacity of a system to function properly within certain

design limits. The methods of increasing reliability are strictly related to the software development

lifecycle phases. Each of them has certain aspects to take into account and to focus on. To improve the

general design progress, great attention must be given to the way the tasks are distributed through the

nodes of the distributed systems, especially in the case of scaled system. The methods given in this

paper have to be detailed and further studied, but certain aspects are already practiced in real life.

Bibliography

[CUCO05] Graham Curtis, David Cobham – Business information Systems, 5th edition, Pretince

Hall, 2005, ISBN 0273687921

[PHAM00] Hoang Pham – Software Reliability, Springer-Verlag Singapore, 2000, ISBN

9813083840, pp. 339

[LYNC96] Nancy A. Lynch – Distributed Algorithms, Morgan Kaufmann, 1996, ISBN 1-55860-

348-4

[KEID08] Idit Keidar – Distributed computing column, The year in review, ACM SIGACT News

39 (4): 53–54, 2008

[GHOS07] Sukumar Ghosh – Distributed Systems, An Algorithmic Approach, 2007, Chapman &

Hall/CRC, ISBN 978-1-58488-564-1

[ANDR00] Gregory R. Andrews – Foundations of Multithreaded, Parallel, and Distributed

Programming, 2000, Addison–Wesley, ISBN 0-201-35752-6

[DOLE00] Shlomi Dolev – Self-Stabilization, 2000, MIT Press, ISBN 0-262-04178-2

[PELE00] David Peleg – Distributed Computing: A Locality-Sensitive Approach, SIAM, 2000

ISBN 0-89871-464-8

[KSSI08] Ajay D. Kshemkalyani, Mukesh Singhal – Distributed Computing, Principles,

Algorithms and Systems, Cambridge University Press, 2008, ISBN-13 978-0-511-

39341-9, 756 pg

[VSTY09] Deo Prakash Vidyarthi, Biplab Kumer Sarker, Anil Kumar Tripathi, Laurence Tianruo

Yang – Scheduling in distributed computing systems, Analysis, Design and Models,

Springer Science-Business Media, 2009, ISBN 978-0-387-74483-4

[LAMP87] L. Lamport – Distribution email, 1987, disponibil:

http://research.microsoft.com/users/lamport/pubs/distributed_systems.txt.

[SISH94] M. Singhal, N. Shivaratri – Advanced Concepts in Operating Systems, New York,

McGraw Hill, 1994.

[TAST03] A. Tanenbaum, M. Van Steen – Distributed Systems: Principles and Paradigms, Upper

Saddle River, NJ, Prentice-Hall, 2003.

[GOSC91] A. Goscinski – Distributed Operating Systems: The Logical Design, Reading, MA,

Addison-Wesley, 1991.

[OCEA10] http://oceanstore.cs.berkeley.edu/ accessed december 3rd 2010

[BEGR92] David Bell, Jane Grimson – Distributed database systems, Addison-Wesley Publishers

Ltd, 1992, ISBN 0201544008, pp. 410

